Lycée Ex CEM Taïba Moutoupha

Année scolaire: 2021-2022

Exercice 1

Parmi les correspondances suivantes préciser celles qui sont des applications.

$$f: [0; +\infty[\to \mathbb{R} \\ x \longmapsto |x+1|]$$

$$g: [3; +\infty[\to \mathbb{R} \\ x \longmapsto \sqrt{x-3}]$$

$$h: \mathbb{R} \to \mathbb{R}$$

 $x \longmapsto x + \sqrt{x^2 + 1}$

$$i: [0; +\infty[\to \mathbb{R}]$$

 $x \longmapsto \sqrt{x-1}$

$$j: \mathbb{R} - \{2\} \to \mathbb{R}$$
$$x \longmapsto \frac{x+1}{x^2 - 4}$$

$$j: \mathbb{R} - \{2\} \to \mathbb{R}$$
 $k: \mathbb{R}^+ \to \mathbb{R}$ $x \longmapsto \frac{x+1}{x^2-4}$ $x \longmapsto \sqrt{x} + \frac{1}{1+x^2}$

Exercice 2

Dites si les applications suivantes sont injectives, surjectives ou bijectives.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \longmapsto \frac{x^2}{x^2 + 1}$$

$$g: \mathbb{R} \to \mathbb{Z}$$

 $x \longmapsto E(x)$

$$h: \mathbb{R} \to \mathbb{R}$$
$$x \longmapsto \sqrt{x^2 + 1}$$

$$i: \mathbb{R} - \{-1\} \to \mathbb{R} - \{-1\}$$

 $x \longmapsto \frac{x+3}{x-1}$

$$j: \mathbb{R} \to [-1; 1]$$
$$x \longmapsto \frac{x}{\sqrt{x^2 + 1}}$$

$$k: [0; +\infty[\xrightarrow{x} [0; 1]]$$
$$x \longmapsto \frac{x}{\sqrt{x^2 + 1}}$$

$$l: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(x; y) \longmapsto x + y$$

$$m: \mathbb{R} \to \mathbb{R}$$
$$x \longmapsto 2x^2 + 3x$$

Exercice 3

A)Montrer que la relation h et i réalise des bijections de I vers J à préciser puis expliciter leurs bijections réciproques.

$$h: \mathbb{R} \to \mathbb{R}$$
$$x \longmapsto x + \sqrt{x^2 + 1}$$

$$x: \mathbb{R} \to \mathbb{R}$$

 $x \longmapsto 2x + \sqrt{x^2 + 1}$

B) On considère la correspondance de $\mathbb R$ dans lui même définie par $f(x) = \sqrt{x^2 - 1} - 2x$

a)Montre que la correspondance f réalise une bijection de $I = \left[\frac{2}{\sqrt{3}}; +\infty\right]$ vers un intervalle J à déterminer.

b)Détermine l'expression $f^{-1}(x)$ en fonction de x.

Exercice 4

Soit f l'application définie par: $f: \mathbb{R} \to \mathbb{R}$ $x \longmapsto \frac{2x}{1+x^2}$

1) f est elle injective, surjective?

2)Montrer que $f(\mathbb{R}) = [-1; 1]$

3)Montrer que la restriction $g: [-1, 1] \rightarrow [-1, 1]$ $x \longmapsto f(x)$ est une

bijection

Exercice 5

Soit f l'application définie par: $f: \mathbb{R} \to \mathbb{R}$ $x \longmapsto x + \sqrt{x^2 + 1}$

1)Montrer $\forall x \in \mathbb{R}, f(x) > 0$

2) f est elle surjective?

3)Soit h l'application définie par: $h: \mathbb{R} \to \mathbb{R}_+^*$ $x \longmapsto f(x)$

Que représente h pour f? Montrer que h est bijective.

Exercice 6

Détermine $f\circ g$ et $g\circ f$ dans chacun des cas suivants: $1)f(x)=\sqrt{x-1}$ et $g(x)=x^2-3$ $2)f(x)=\frac{x}{x-1}$ et $g(x)=x^2+1$

$$1)f(x) = \sqrt{\frac{x-1}{x}}$$

$$q(x) = x^2 - 3$$

$$2)f(x) = \frac{x}{x-1}$$

$$et g(x) = x^2 + 1$$

Exercice 7

$$f_1(x) = x^2 -$$

$$f_2(x) = \frac{1}{x}$$

$$f_3(x) = 2x - 1,$$

On considère les fonctions suivantes:
$$f_1(x)=x^2-3, \qquad f_2(x)=\frac{1}{x}, \qquad f_3(x)=2x-1,$$

$$f_4(x)=x^3, \qquad f_5(x)=\sqrt{x}$$

Écrire chacune des fonctions suivantes sous la forme $f_i \circ f_j$.

$$f(x) = 2\sqrt{x} - 1$$

$$g(x) = \sqrt{x^2 - 3}$$

$$f(x) = 2\sqrt{x} - 1$$
$$h(x) = \frac{1}{2x - 1}$$

$$j(x) = (2x - 1)^3$$

Exercice 8

Soit f la fonction définie par $f(x) = \frac{1 + \sqrt{x^2 - 1}}{1 - \sqrt{x^2 - 1}}$

1)Détermine l'ensemble de définition D_f de f.

2) Résoudre dans \mathbb{R} l'équation f(x)=y avec y un paramètre réel.

3)On considère l'application $g:[1;+\infty[-\{\sqrt{2}\}\to\mathbb{R}]]$

L'application g est -elle surjective? est elle injective? 4) Détermine le plus grand sous ensemble \mathbb{F} de \mathbb{R} pour que l'application:

 $h: [1; +\infty[-\{\sqrt{2}\}] \to \mathbb{F}$

 $x \longmapsto f(x)$ soit bijective.

Exercice 9

Soit f l'application définie par: $f: \mathbb{R} - \{1\} \to \mathbb{R}$ $x \longmapsto \frac{2x+1}{x-1}$

1)L'application f telle surjective? Est elle injective?

2) détermine le plus grand sous ensemble \mathbb{F} de \mathbb{R} pour

que l'application:

$$g: \mathbb{R} - \{1\} \to \mathbb{F}$$

 $x \longmapsto f(x)$ soit bijective.

3) Explicité g^{-1} la bijection réciproque de g.

RENFORCEMENT SUR LES POLYNOMES

Exercice 10

Soit $P(x) = x^4 - 4x^3 + 6x^2 + ax + b$ et $T(x) = x^3 - 5x^2 + 2x + 8$

- 1)Détermine a et b pour que P soit factorisable par $x^2 - 3x + 2$.
- 2) Factorise P(x).
- 3)Résoudre dans \mathbb{R} :

$$a)P(x)=0$$
 b)

b)
$$P(-2x+3)=0$$
 c) $P(x) \le 0$

4)Détermine les réels a et b tel que:

$$T(x) = (ax + b)(x^2 - 3x - 4).$$

On pose
$$S(x) = \frac{P(x)}{T(x)}$$
.

- 5) Détermine le domaine de définition de S(x).
- 6) Simplifie S(x) et étudie son signe.
- 7) Résous S(x) < 0 dans \mathbb{R} .

$$R(x) = \frac{P(x)}{x^2 - 3}.$$

 $R(x) = \frac{P(x)}{x^2 - 3}.$ 8) Détermine les polynômes A(x) et B(x) tels que

$$R(x) = A(x) + \frac{B(x)}{x^2 - 3}$$

Exercice 11

Les questions sont indépendantes.

1)Soit le polynôme $p = x^4 + ax^3 + 2x + b$ avec a et b des réels.

Détermine a et b pour que 1 soit une zéro double de P.

- 2)Trouver un polynôme f de degré 2 tel que:
- f(-1)=9; f(2)=12 et f(-3)=47.
- 3)Soit h un polynôme $h(x) = x^3 + ax + b$.

Détermine a et b pour que 1 soit un racine double de h.

- 4) Montrer que si l'équation $x^3 + px + q = 0$ admet trois racines a, b et c alors a+b+c=0.
- on suppose que $q \neq 0$. Calculer en fonction de p et q le réel $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ 5)Soit P un polynôme de degré supérieur à 2.
- p(x) divisé par x-2 donne -4 comme reste.
- p(x) divisé par x + 3 donne 2 comme reste.

Quel reste donnera t-il si on le divise par (x-2)(x+3).

Exercice 12

Soit le polynôme $p(x) = x^3 - 2x^2 - x + 2$ admettant trois racines a,b et c.

Sans calculer les réels a, b et c déterminer:
$$a+b+c$$
; abc ; $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

Exercice 13

$$p(x) = \frac{a^2(x-b)(x-c)}{(a-b)(a-c)} + \frac{b^2(x-c)(x-a)}{(b-c)(b-a)} + \frac{c^2(x-a)(x-b)}{(c-a)(c-b)}$$
1)Calculer p(a), p(b) et p(c).

2)En déduire que $p(x) = x^2$.

Exercice 14

Soit le polynôme k défini par $k(x) = x^4 + px^2 + q$.

- 1)Détermine les réels p et q pour que k soit divisible par $x^2 - 6x + 5$.
- 2) En déduire une factorisation complète de k(x).
- 3) Résoudre dans R les équations et inéquations suiv-
- $a)k(x) \le 0.$
- b)k(|-3x+2|) = 0.

Exercice 15

- 1) En utilisant la méthodes de Hörner calculer p(2) et p(3) avec $p(x) = x^6 - 4x^4 - x^2 + 4$.
- 2)Prouver que 1 est une racine double du polynôme q défini $q(x) = x^n - n(x-1) - 1$.
- 3)Détermine les réels a et b pour que polynôme $r(x) = ax^{n+1} - bx^n + 1$ soit factorisable par $(x-1)^2$.

Exercice 16

Soit $p(x) = ax^2 + bx$ avec a et b des réels.

- 1)Déterminer les réels a et b tels que:
- p(x+1) p(x) = x.
- 2)En déduire que pour tout entier $n \ge 1$, on a:

$$1+2+3+\dots+n=\frac{n(n+1)}{2}.$$

Exercice 17

Les questions indépendantes.

- 1)Déterminer un polynôme p unitaire de degré 3 factorisable par x-1 et ayant le même reste dans les divisions par (x-2); (x-3) et (x-4).
- 2)Soit p un polynôme dont les restes dans les divisions par x-1, x-2 et x-3 sont respectivement 3, 7 et 13.

Détermine le reste de la division p par (x-1)(x-2)(x-3).

Exercice 18

Soit l'équation paramétrique:

$$E_m: (m+1)x^2 - (m+3)x + 3 - m = 0$$

- 1) Résoudre dans $\mathbb R$ suivant la valeurs du paramètre réel m l'équation $E_m(x) = 0$
- 2)Établir une relation indépendante de m entre x_1 et x_2 supposées les deux solutions de E_m
- 3)Pour quelles valeurs de m, l'équation admet deux solutions de signes contraires.
- 4)Pour quelles valeurs de m, l'équation admet deux solutions positives puis négatives?
- 5)Déterminer m pour que 2 soit une solution de l'équation, trouver alors l'autre solution.

"L'enseignement devrait être ainsi : celui qui le reçoit le recueille comme un don inestimable mais jamais comme une contrainte pénible."

Albert Einstein

Bon Courage!!!